18 research outputs found

    Smoking during pregnancy and risk of abnormal glucose tolerance: a prospective cohort study

    Get PDF
    Background: Disturbances in glucose metabolism during pregnancy are associated with negative sequalae for both mother and infant. The association between smoking and abnormal glucose tolerance (AGT) remains controversial. Therefore, the aim of this study was to examine the relationship between smoking prior to and during pregnancy and risk of AGT. Methods: We utilized data from a prospective cohort of 1,006 Hispanic (predominantly Puerto Rican) prenatal care patients in Western Massachusetts. Women reported pre- and early pregnancy smoking at recruitment (mean = 15 weeks) and mid pregnancy smoking at a second interview (mean = 28 weeks). AGT was defined as \u3e 135 mg/dL on the routine 1-hour glucose tolerance test (1-hr OGTT). We used multivariable regression to assess the effect of pre, early, and mid-pregnancy smoking on risk of AGT and screening plasma glucose value from the 1-hr OGTT. Results: In age-adjusted models, women who smoked \u3e 0-9 cigarettes/day in pre-pregnancy had an increased risk of AGT (OR = 1.90; 95% CI 1.02-3.55) compared to non-smokers; this was attenuated in multivariable models. Smoking in early (OR = 0.48; 95% CI 0.21-1.10) and mid pregnancy (OR = 0.38; 95% CI 0.13-1.11) were not associated with AGT in multivariable models. Smoking during early and mid pregnancy were independently associated with lower glucose screening values, while smoking in pre-pregnancy was not. Conclusions: In this prospective cohort of Hispanic women, we did not observe an association between smoking prior to or during pregnancy and risk of AGT. Findings from this study, although based on small numbers of cases, extend prior research to the Hispanic population

    Embedding robotic surgery into routine practice and impacts on communication and decision making: a review of the experience of surgical teams

    Get PDF

    Anatomically realistic simulations of liver ablation by irreversible electroporation: impact of blood vessels on ablation volumes and undertreatment

    No full text
    Irreversible electroporation is a novel tissue ablation technique which entails delivering intense electrical pulses to target tissue, hence producing fatal defects in the cell membrane. The present study numerically analyzes the potential impact of liver blood vessels on ablation by irreversible electroporation because of their influence on the electric field distribution. An anatomically realistic computer model of the liver and its vasculature within an abdominal section was employed, and blood vessels down to 0.4 mm in diameter were considered. In this model, the electric field distribution was simulated in a large series of scenarios (N = 576) corresponding to plausible percutaneous irreversible electroporation treatments by needle electrode pairs. These modeled treatments were relatively superficial (maximum penetration depth of the electrode within the liver = 26 mm) and it was ensured that the electrodes did not penetrate the vessels nor were in contact with them. In terms of total ablation volume, the maximum deviation caused by the presence of the vessels was 6%, which could be considered negligible compared to the impact by other sources of uncertainty. Sublethal field magnitudes were noticed around vessels covering volumes of up to 228 mm3. If in this model the blood was substituted by a liquid with a low electrical conductivity (0.1 S/m), the maximum volume covered by sublethal field magnitudes was 3.7 mm3 and almost no sublethal regions were observable. We conclude that undertreatment around blood vessels may occur in current liver ablation procedures by irreversible electroporation. Infusion of isotonic low conductivity liquids into the liver vasculature could prevent this risk.This work received financial support from the Spanish Government through grants TEC2010-17285, TEC2011-27133-C02, and TEC2014-52383-C3 (TEC2014-52383-C3-2) and from the European Commission through the Marie Curie IRG grant “TAMIVIVE” 256376
    corecore